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Abstract

Background

Recently, artificial intelligence (AI)-based applications for chest imaging have emerged as

potential tools to assist clinicians in the diagnosis and management of patients with corona-

virus disease 2019 (COVID-19).

Objectives

To develop a deep learning-based clinical decision support system for automatic diagnosis

of COVID-19 on chest CT scans. Secondarily, to develop a complementary segmentation

tool to assess the extent of lung involvement and measure disease severity.

Methods

The Imaging COVID-19 AI initiative was formed to conduct a retrospective multicentre

cohort study including 20 institutions from seven different European countries. Patients with

suspected or known COVID-19 who underwent a chest CT were included. The dataset was

split on the institution-level to allow external evaluation. Data annotation was performed by

34 radiologists/radiology residents and included quality control measures. A multi-class

classification model was created using a custom 3D convolutional neural network. For the

segmentation task, a UNET-like architecture with a backbone Residual Network (ResNet-

34) was selected.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0285121 May 2, 2023 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Topff L, Sánchez-Garcı́a J, López-
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Results

A total of 2,802 CT scans were included (2,667 unique patients, mean [standard deviation]

age = 64.6 [16.2] years, male/female ratio 1.3:1). The distribution of classes (COVID-19/

Other type of pulmonary infection/No imaging signs of infection) was 1,490 (53.2%), 402

(14.3%), and 910 (32.5%), respectively. On the external test dataset, the diagnostic multi-

classification model yielded high micro-average and macro-average AUC values (0.93 and

0.91, respectively). The model provided the likelihood of COVID-19 vs other cases with a

sensitivity of 87% and a specificity of 94%. The segmentation performance was moderate

with Dice similarity coefficient (DSC) of 0.59. An imaging analysis pipeline was developed

that returned a quantitative report to the user.

Conclusion

We developed a deep learning-based clinical decision support system that could become

an efficient concurrent reading tool to assist clinicians, utilising a newly created European

dataset including more than 2,800 CT scans.

Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2), has become a global health emergency since its appearance by the end

of 2019 [1]. Dyspnoea, fever, dry cough, and myalgia are common manifestations of COVID-

19. However, its clinical presentation is variable, ranging from asymptomatic to severe and

potentially fatal [2]. As a result, COVID-19 continues to present challenges in diagnosis and

patient monitoring.

At present, the reference standard for diagnosis is the reverse transcriptase polymerase

chain reaction (RT-PCR) test [3]. However, this technique has known limitations due to varia-

tions in sensitivity and longer turnaround times in certain settings which can affect key deci-

sions in clinical routine. Additionally, the limited availability of RT-PCR and the lack of

experienced personnel to run the analysis may be a problem in some countries [4, 5].

Several studies have focused on the potential use of chest imaging for diagnostic purposes.

Although chest imaging is not indicated for routine screening of asymptomatic individuals or

patients with mild symptoms [6], it is able to identify alternative causes of respiratory symp-

toms, such as bacterial infection, and may help to define disease stage, assess disease progres-

sion and improve prognostication in symptomatic COVID-19 patients [7, 8]. Computed

tomography (CT) is the gold standard imaging modality for the diagnosis of COVID-19 pneu-

monia [7], and seems to have great diagnostic and prognostic value for COVID-19 as evi-

denced in several studies [9–16]. Thus, some studies even showed a higher sensitivity than

RT-PCR in diagnosing COVID-19 [9–12], allowing to detect ground-glass opacities—lung

lesions commonly found on CT in COVID-19 patients—[9, 13, 14] and even abnormalities

and changes over time in asymptomatic patients [15, 16]. The fast turnaround time of CT

imaging is also worth mentioning [17, 18]. Nevertheless, as discussed by Mair et al. [12], CT

specificity remains low, which makes it unlikely to replace PCR as the gold standard test. The

advantages already discussed, however, suggest that a CT imaging-based decision support tool

could improve patient’s management, becoming a useful complementary test to RT-PCR or

even alternative in special circumstances (e.g., in cases of work overload or resource shortage).
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Additionally, there may be a role in the opportunistic screening of COVID-19 on routinely

performed chest CT scans in different settings, which could be especially relevant for oncologic

patients.

Interestingly, deep learning-based applications have the potential to optimise image inter-

pretation, by improving performance in detection, characterisation and quantification tasks,

especially in the field of chest imaging [19]. They also facilitate the automatization of processes,

reducing the diagnostic inconsistencies from inter- and intra-reader diagnoses. Therefore,

deep learning models based on CT scans emerge as promising tools to assist radiologists and

clinicians in diagnosing and managing COVID-19 patients.

The aim of this study was to develop a deep learning-based clinical decision support system

for the automatic diagnosis of COVID-19 on chest CT scans, that also included a segmentation

algorithm to assess the extent of lung involvement—by segmenting infectious lung opacities

and calculating the volume of affected lung tissue—ultimately providing a measure of disease

severity.

Materials and methods

Study design

The Imaging COVID-19 AI initiative was a large-scale collaborative effort to develop a gener-

alisable deep-learning model for automatic classification and disease segmentation of chest

CTs in COVID-19 suspected patients. For this purpose, a retrospective multicentre cohort

study including 20 participant institutions from seven different European countries was con-

ducted (S1 and S2 Tables). The study was approved by the Institutional Review Board of the

Netherlands Cancer Institute (IRBd20-098). Study-specific informed consent was not required

because of the retrospective nature of the study.

Patient selection

Outpatient or hospitalised patients (�18 years old) with suspected or known COVID-19 who

underwent chest CT in secondary or tertiary referral centres were included in the study. The

selection of patients was done through convenience sampling. The inclusion criteria for chest

CT were as follows: (a) DICOM format, (b) with or without intravenous contrast, (c) volumet-

ric series or axial reconstruction (recommended lung kernel), (e) slice thickness� 3 mm (rec-

ommended�1.5 mm). For each collected CT study of the chest, an eligible series was

manually selected by two radiologists (E.R., L.T.).

The diagnostic reference test for detection of SARS-CoV-2 was reverse RT-PCR. The sam-

pling method was determined by the local centre, e.g., nasopharyngeal swab or bronchial

lavage in selected cases.

Imaging data

For this study, a dataset including CT scans routinely acquired from December 2019 through

July 2020 was created. Imaging performed within seven days before or after the definitive diag-

nostic reference test were included. Each CT study was classified as “COVID-19”, “non-

COVID-19 with another type of pulmonary infection”, or “non-COVID-19 with no imaging

signs of infection”. The diagnostic criteria were based on collected laboratory test results and

imaging findings (S3 Table). CT scans of patients that did not meet the diagnostic criteria were

excluded for the classification model creation. Other relevant clinical information was also col-

lected, including patient demographics (age, sex), hospitalisation status, and respiratory patho-

gen test results. Patients with missing clinical or imaging data were excluded.
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For data collection, a secured web-based platform for manual uploading, or a local installa-

tion with PACS integration (Quibim SL, Valencia, Spain) was provided to the participating

institutions. Pseudonymisation of the imaging data was performed locally, leaving any patient

identifiable information on the client-side. Relevant clinical information was collected in a

data transmittal form (DTF).

The dataset was split into a training, validation, and test sample (ratio 70:15:15) for both the

classification/diagnosis and segmentation model creation. To assess the generalizability of the

deep learning models, scans from different institutions were assigned to the training, valida-

tion, or test set (institution-level split).

Data annotation

A custom annotation platform for medical imaging (Robovision, Ghent, Belgium) was devel-

oped to allow a collaborative decentralised annotation effort. The cloud-based platform incor-

porated image labelling software for 3D segmentation (ImFusion GmbH, München,

Germany). In total, 34 annotators were recruited to perform the first read of the CT scans. The

team of annotators included 29 radiologists and five radiology residents. The radiologists had

an average of 16.6 years of experience, and 19 out of 29 were subspecialized in thoracic imag-

ing. The annotators were assigned one or more batches of 50 CT scans. The annotations were

reviewed by a dedicated team of two radiologists (E.R., L.T.) with 25 and 4 years of experience,

respectively.

Each annotator received a video training with the intent of improving consistency of label-

ling [20]. The labelling consisted of manual segmentation of all infectious and non-infectious

lung opacities and assigning text labels for classification on the image level. A comprehensive

labelling system (S4 Table) was developed for this study in collaboration with an international

initiative for a COVID-19 imaging database [21]. The annotator was assisted by a semi-auto-

mated brush tool for segmentation that used a 3D region-growing algorithm. After having

labelled the first 994 CT scans, an automatic segmentation model was created to assist and

speed up the further annotation process.

Data preprocessing

For training the COVID-19 classification model, images were resized to 64x224x224 to speed

up process and to allow GPU memory fitting. Window Level (WL) and Widow Width (WW)

were set to -500 and 1500, respectively, to convert the image to lung window, therefore Houns-

field units (HU) were clipped to -1250 and 250, minimum and maximum values, respectively.

Additionally, the pixel values were normalised to the range (0, 1) and a lung mask from a pre-

vious lung segmentation convolutional neural network (CNN) [22] was applied to set all voxels

outside the lungs to 0.

For training the segmentation model each 2D image was resized to 320x320. The same win-

dow and normalisation were applied as for the classification task, but in this case, pixel infor-

mation outside the lungs was not removed. Finally, to focus on the areas of interest,

particularly the lung tissue, a specific pre-processing called balance contrast enhancement

technique (BCET) was performed.

COVID-19 classification model

A deep learning model was developed that takes a whole CT scan as input data to perform a

multi-class classification into the following categories: “COVID-19”, “Other type of pulmonary

infection”, or “No imaging signs of infection”. The model consisted of a three-dimensional

(3D) CNN whose architecture is shown in Fig 1. Briefly, the architecture consisted of four
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blocks including a 3D convolutional filter with LeakyReLU activation function, a 3D Max

Pooling layer and a 3D Batch Normalization layer with 16, 16, 32, and 64 convolutional filters,

respectively. Then, an adaptive Average Pooling 3D, a linear layer with 128 neurons using a

LeakyReLU activation function and a Dropout layer of 30% and lastly, a linear layer with three

neurons using a Softmax activation function. Therefore, the input of the network was a 3D vol-

ume, and the output was a vector of three dimensions with the probability associated to each

of the three classes. Since the network architecture used was a custom one, the model parame-

ters were randomly initialised using PyTorch inbuilt weight initialisation [23].

Segmentation model

A deep learning segmentation model to assess the extent of lung involvement and disease

severity was developed. The model provided a mask of infectious lung opacities.

The deep learning segmentation model used to extract the mask for the lung opacities was

trained using a 2D approach. Each 3D volume was split into 2D slices and used as input for the

model. The CNN architecture was a UNET-like architecture with a backbone Residual Net-

work (ResNet-34), for both the encoder and decoder block. It was composed of 34 layers and

each ResNet block was two layers deep. The prediction was made slice-wise and stacked into a

3D mask whose size matched the original one.

In addition, the lungs and lobes were segmented to calculate the percentage of affected lung

tissue using a model previously developed for this purpose (Quibim Precision Platform 2.8)

[22].

Finally, the segmentation tool included the calculation of a disease severity index score. The

score was based on 25 points, 5 for each lung lobe, depending on the percentage of lung

involvement ([0] no involvement, [1] less than 5% involvement, [2] 5%–25% involvement, [3]

26%–50% involvement, [4] 51%–75% involvement, and [5] 76%–100% involvement) as previ-

ously reported by Pan et al. [24]. The scores were added together to provide a total CT severity

score ranging from 0 (no involvement) to 25 (maximum involvement).

Training

To improve models’ generalization, different data augmentation techniques were randomly

applied during the training process:

Fig 1. Custom 3D CNN architecture used for the classification model approach. C: 3x3x3 Conv + LeakyReLU

+ MaxPooling + Batch Normalization; FC1: 128 neuron fully connected layer; FC2: 3 neuron fully connected layer.

CNN, convolutional neuronal network.

https://doi.org/10.1371/journal.pone.0285121.g001
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• Classification model: gaussian noise, with variance in the range of (0, 0.015), 3D rotations,

elastic deformations using alpha in range of (0, 100) and sigma in range of (8,13), scaling in

range of (0.9, 1.1), and mirroring on y and z axis.

• Segmentation model: random rotations in the range of (-20, 20) degrees, zooms in the range

(0.95, 1.05) and lighting variations in the range (0%, 10%).

The COVID-19 classification model was trained during 200 epochs using a batch size of 10.

The learning rate was initialised to 1e-04 and, after 50 epochs where the validation accuracy

did not improve, the learning rate was reduced by a factor of 10.

The training process of the segmentation model consisted of 50 epochs divided in stages

where the convolutional layers of the network were alternatively frozen and unfrozen and the

learning rate was experimentally set in the range of (1e-07, 1e-02). In the frozen step, the learn-

ing rate was fixed stage-by-stage to the optimum value by plotting loss progression per epoch.

In the unfrozen step, a range of values was chosen to be distributed along all the layers of the

network, providing a lower value to the initial layers and a higher one to the deeper layers. In

addition, the network was trained using three different input image sizes, from lower to higher,

to learn the different patterns from more generic to more specific. The selected sizes were

128x128, 256x256 and 320x320 and the same routine was repeated for each one. The selected

batch size was 64, except for the 320x320 resolution, which was halved to allow for memory fit-

ting. The optimisation algorithm was Stochastic Gradient Descent (SGD), and the loss func-

tion was Binary Cross Entropy (BCE).

Image analysis pipeline

An image analysis pipeline was built to process chest CTs and deliver a report with results to

the physician. The pipeline started by performing data pre-processing steps. Then, the classifi-

cation model provided a probability score for the three diagnostic classes. The following cut-

off values for probabilities provided by the classification model were applied:

• If the probability of “No imaging signs of infection” > 0.45, the case was classified as “No

imaging signs of infection”

• If the probability of “COVID-19” > 0.45, the case was classified as “COVID-19”. If not, the

case was classified as “Other type of pulmonary infection”.

In parallel, the segmentation model provided a mask of infectious lung opacities, the per-

centage of affected lung tissue and a severity index score (“mild” [scores 1–5], “moderate”

[scores 6–14] and “severe” [scores 15–25]). Finally, airways and vessels segmentation were per-

formed to render a 3D image that was added to the report for visualisation purposes.

Evaluation

For the COVID-19 classification model, the Area Under the Receiver Operating Characteristic

curve (AUROC; both class-wise and average scores were obtained) was calculated. Sensitivity,

specificity, positive-predictive value, and negative-predictive value of the likelihood of

COVID-19 vs other cases were calculated. Performance metrics for the other binary classifica-

tions (“No imaging signs of infection” vs other cases and “non-COVID-19 with another type

of pulmonary infection” vs other cases) were also obtained. To evaluate the performance of the

segmentation model, DSC was calculated on all scans with at least 1,000 voxels in the ground

truth segmentation. Because DSC is zero in cases without ground truth segmentations, this

metric was only calculated for positive cases with infectious lung opacities. In addition, Pear-

son’s correlation coefficient between the predicted volume and the real one was determined.
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Results

Patient and imaging characteristics

The data flow diagram is shown in Fig 2. A total of 2,802 CT scans were selected for the study,

of which 2,571 met the inclusion criteria for the COVID-19 classification model creation and

1,575 (manually labelled) were used to develop and test the segmentation model. The patient

demographics are listed in Table 1. The distribution of cases for the creation of both models

according to the different classes established—“COVID-19”, “Other type of pulmonary infec-

tion”, or “No imaging signs of infection”—is shown in Table 2. For the COVID-19 classification

model, the training and validation dataset (n = 2,097 CTs) consisted of 1,979 unique patients

(mean age [SD] = 62.1 [16.3] years, male/female [M/F] ratio 1.3:1). The test dataset (n = 474

CTs) consisted of 474 unique patients (mean age 65.5 [16.0] years, M/F ratio 1.4:1). For the seg-

mentation model, the training and validation dataset (n = 1,334 CTs) consisted of 1,307 unique

patients (mean age [SD] = 63.1 [16.6] years, M/F ratio 1.2:1). The test dataset (n = 241 CTs) con-

sisted of 241 unique patients (mean age [SD] = 64.7 [15.3] years, M/F ratio 1.9:1).

The data distribution per institution for the classification and segmentation model creation

is shown in S1 Fig. Imaging was acquired on CT scanners from four manufacturers (GE, Phil-

ips, Siemens, and Toshiba), including 27 different vendor models of which the details are avail-

able in S5 Table. The variation in slice thickness ranged from 0.63 to 3.0 mm; average 1.6 mm.

COVID-19 classification model performance

The performance of the COVID-19 classification model on the test dataset is shown in Fig 3.

As observed, on average, the multiclassification model yielded high AUC values (micro-

Fig 2. Data flowchart. COVID-19, coronavirus disease 2019; CT, computed tomography.

https://doi.org/10.1371/journal.pone.0285121.g002

Table 1. Patient demographics.

Eligible CT scans (n) 2,802

Unique patients (n) 2,667

Mean age ± SD (years) 64.6 ± 16.2

Male/female ratio 1.3:1

Hospitalisation statusa (n)

Inpatient 1,121 (71.8%)

Inpatient—ICU 144 (9.2%)

Outpatient 441 (28.2%)

CT, computed tomography; ICU, intensive care unit; SD, standard deviation.
aPatient hospitalisation status was known for 1562 (55.7%) CT scans.

https://doi.org/10.1371/journal.pone.0285121.t001
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average AUC = 0.93; macro-average AUC = 0.91), with good sensitivity (87%), specificity

(94%), and accuracy (90%), and with good positive and negative predictive values (95% and

83%, respectively) for the likelihood of COVID-19 vs other cases (Table 3). Performance met-

rics for the other binary classifications are shown in S6 Table. The confusion matrix for the

model is shown in Fig 4. Importantly, no false positives for COVID-19 were detected if the

probability score was 0.75 or higher.

Segmentation model performance

The final test dataset for assessing the segmentation performance was determined by a histo-

gram-based threshold of CT scans with more than 1,000 positive voxels, thereby including 167

Table 2. Distribution of diagnostic classes for both COVID-19 classification and segmentation models.

Training set n (%) Validation set n (%) Test set n (%) Total n (%)

Classification Segmentation Classification Segmentation Classification Segmentation Classification Segmentation

COVID-19 923 (54.5) 544 (50.2) 218 (54.0) 126 (50.4) 278 (58.6) 154 (63.9) 1,419 (55.2) 824 (52.3)

Other type of pulmonary infection 265 (15.7) 189 (17.4) 38 (9.4) 36 (14.4) 63 (13.3) 23 (9.5) 366 (14.2) 248 (15.7)

No imaging signs of infection 505 (29.8) 351 (32.4) 148 (36.6) 88 (35.2) 133 (28.1) 64 (26.6) 786 (30.6) 503 (31.9)

TOTAL 1,693 1,084 404 250 474 241 2,571 1,575

Included institutions 11 3 6 20

COVID-19, coronavirus disease 2019

https://doi.org/10.1371/journal.pone.0285121.t002

Fig 3. Receiver operating characteristic (ROC) curve for the COVID-19 classification model. AUC, area under the

ROC curve.

https://doi.org/10.1371/journal.pone.0285121.g003
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scans, and excluding 74 scans. The performance metrics for segmentation are shown in

Table 4. The model provided faithful visual results, within lung contours, and sensitive to

small ground-glass opacities.

Deployment and output results

An example of the output returned to the user is shown in Fig 5, mentioning both the diagnos-

tic classification and segmentation results. The developed models and image analysis pipeline

were containerized using Docker technology [25]. The resulting application was made

Table 3. Performance metrics for the COVID-19 classification model (COVID-19 vs other cases).

Performance metrics COVID-19 classification model

AUC 0.83

Sensitivity 0.87

Specificity 0.94

Accuracy 0.90

PPV 0.95

NPV 0.83

AUC, area under the curve; COVID-19, coronavirus disease 2019; NPV, negative predictive value; PPV, positive

predictive value

https://doi.org/10.1371/journal.pone.0285121.t003

Fig 4. Confusion matrix for the COVID-19 classification model. COVID-19, coronavirus disease 2019.

https://doi.org/10.1371/journal.pone.0285121.g004
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Table 4. Segmentation model performance metrics.

Metric Statistics Value

Total DSC Mean 0.59

SD 0.20

Pearson correlation Correlation coefficient 0.92

Two tailed p-value < 0.001

DSC, Dice similarity coefficient; SD, standard deviation.

https://doi.org/10.1371/journal.pone.0285121.t004

Fig 5. Structured report with analysis results. A 3D reconstruction of the lungs is generated, together with the most

affected transverse CT slice and segmentation masks of the lung opacities. The report includes disease probabilities and

quantitative analysis results. COVID-19, coronavirus disease 2019; CT, computed tomography.

https://doi.org/10.1371/journal.pone.0285121.g005
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accessible in a freely available online platform for research purposes (https://imagingcovid19.

quibim.com/). The web-based platform was used by more than 300 users from four different

continents, who executed more than 7,000 analyses. In addition, the application was made

available through a local installation with (research) picture archiving and communication sys-

tem (PACS) integration. The on-premise installation allowed automatic analysis of eligible CT

scans after acquisition and was installed in more than 10 institutions.

Discussion

We developed and evaluated an automated deep learning-based application for the diagnosis

of COVID-19 on chest CT images. In addition, the tool performed segmentation of infectious

lung opacities, enabling the calculation of the extent of lung involvement, as well as the predic-

tion of COVID-19 disease severity. As a result of the image analysis pipeline using both mod-

els, a complete and visual report can be delivered that can assist clinicians in the decision-

making process of suspected and known COVID-19 patients.

Our results demonstrated excellent performance (micro-average AUC = 0.93; macro-aver-

age AUC = 0.91) in the classification task, by differentiating COVID-19 versus other types of

pulmonary infection or no imaging signs of infection. This corresponds to what was reported

earlier. In a recently published systematic review [26], in which the available data on the AI-

assisted CT-scan prediction accuracy for COVID-19 were reviewed, 18 studies developing AI

models based on CNN were identified. These models showed excellent ability to discriminate

COVID-19 and non-COVID pneumonia with an accuracy of 70% to 99.9%, sensitivity of 73%

to 100%, specificity of 25% to 100%, and AUC of 0.73 to 1. The values produced by our model

for these performance metrics for the classification of COVID-19 cases versus other cases were

also within those ranges, with an accuracy of 90%, a sensitivity of 87%, a specificity of 94% and

an AUC of 0.83, with micro- and macro-averaged AUC values of 0.93 and 0.91 for the multi-

class classification, respectively. On the other hand, in our test dataset, there were no false posi-

tives for COVID-19 if the probability score was 0.75 or higher. The tool has the potential to

support the radiologist during image interpretation, as distinguishing between COVID-19 and

other pneumonias may be challenging. Indeed, Bai et al. [27] found that AI assisted interpreta-

tion improved the radiologists’ sensitivity and specificity in discriminating COVID-19 from

other types of pneumonia on chest CT. Likewise, Zhang et al. [28] reported that the perfor-

mance of their AI system was overall superior to that of junior radiologists and comparable to

mid-senior radiologists.

Importantly, in the majority of studies published so far, deep learning models were devel-

oped and validated with newly created datasets limited in size [29, 30], or including CT scans

exclusively or almost exclusively acquired in China [28, 31]. To the best of our knowledge, our

study is the only one to date using a newly created multicentre dataset of more than 2,800 CT

scans acquired from 20 institutions located in 7 different European countries during the first

wave of the pandemic. The performance and generalisability were assessed on external data

containing 483 patients from six institutions, which strengthens our conclusions.

It is recognised that CT imaging can be used to assess the severity of COVID-19 [32–36].

However, interpretation of disease extent may be subject to interobserver variability. Auto-

mated calculation of parenchymal involvement can therefore provide a fast and reproducible

way to assess the disease severity and help with prognosis. In this work, we also developed a

deep learning model to assess the extent of lung involvement by segmenting COVID-19 infec-

tion on CT images, ultimately providing information regarding the disease severity. In our

study, the segmentation performance (DSC = 0.59) was moderate, probably because of the

diversity of the external test dataset that was used. Although several studies have reported
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higher DSC values, it is worth mentioning that most of them were single centre studies, were

performed with small sample sizes or did not assess model performance on an external test

dataset [37–39]. Our results are similar to those obtained in another multicentre study carried

out with a large cohort from China, in which a mean DSC of 0.587 for lesion segmentation

was reported [28]. It is also important to note the remarkable annotation effort in this study,

which brought together a large group of annotators consisting of 29 radiologists with an aver-

age of 16.6 years of experience. Additionally, data annotations were reviewed by two dedicated

radiologists to achieve accurate and consistent labels.

In a recent systematic review, Roberts et al. [40] reported a high prevalence of deficiencies

in methodology of AI studies for detection and prognostication of COVID-19 on imaging.

These limitations include poor-quality data, low reproducibility, and biases in study design. In

this study, we tried to overcome some of those issues. First, as discussed earlier, data were col-

lected from several European institutions, both academic and non-academic, creating a diverse

dataset with different scanning protocols and image qualities. Secondly, data collection, dataset

split, data pre-processing, training approach, model creation, and performance metrics were

reported in detail to increase the reproducibility of our study. Finally, control patients were

selected during the same time period as COVID-19 patients to avoid discrepancies in imaging

protocols that could bias the classification task.

However, this study also has some limitations. First, patients were selected by convenience

sampling during a period of high incidence rates of COVID-19 in Europe. This resulted in a

class imbalance with overrepresentation of COVID-19 patients versus other causes of pneu-

monia. Secondly, RT-PCR was used as a reference standard. The sensitivity of RT-PCR is

imperfect, which can result in false negative cases. Furthermore, not all patients in the non-

COVID-19 pneumonia group had a proven respiratory disease. Finally, the segmentation per-

formance was compared to manual segmentation, which is known to have a high interrater

variability.

Conclusion

As a result of the Imaging COVID-19 AI initiative, a large-scale collaborative effort involving

20 institutions from seven countries in Europe, a generalizable deep learning-based application

was developed that performed automated COVID-19 diagnosis and allowed to assess the

extent of lung involvement and disease severity. We believe that our system could become an

efficient first or concurrent reading tool to assist clinicians and radiologists, especially during

outbreak periods, in which a significant demand for diagnostic expertise is required and in

which molecular testing may be time-consuming and/or limited (e.g., remote areas). The assis-

tance provided by this automatic tool may improve patient’s triaging and management with-

out adding much cost, by reducing waiting time and shortening diagnostic workflow time,

subsequently allowing a more efficient and quicker response in an emergency situation. In the

future, the clinical impact of the developed application on the diagnostic accuracy and effi-

ciency of the radiologist will need to be further investigated.
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• Carlos F. Muñoz-Núñez, Department of Radiology, Hospital Universitario y Politécnico
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